Abstract Korovkin-type theorems in modular spaces and applications
نویسندگان
چکیده
Korovkin-type theorems in modular spaces and applications C. Bardaro ∗ A. Boccuto † X. Dimitriou ‡ I. Mantellini § Abstract We prove some versions of abstract Korovkin-type theorems in modular function spaces, with respect to filter convergence for linear positive operators, by considering several kinds of test functions. We give some results even with respect to an axiomatic convergence, whose approach includes almost convergence. An extension to non positive operators is also studied. Finally, we give some examples and applications to moment and bivariate Kantorovich-type operators, showing that our results are proper extensions of the corresponding classical ones.We prove some versions of abstract Korovkin-type theorems in modular function spaces, with respect to filter convergence for linear positive operators, by considering several kinds of test functions. We give some results even with respect to an axiomatic convergence, whose approach includes almost convergence. An extension to non positive operators is also studied. Finally, we give some examples and applications to moment and bivariate Kantorovich-type operators, showing that our results are proper extensions of the corresponding classical ones.
منابع مشابه
Fixed point theorems for new J-type mappings in modular spaces
In this paper, we introduce $rho$-altering $J$-type mappings in modular spaces. We prove some fixed point theorems for $rho$-altering and $rho$-altering $J$-type mappings in modular spaces. We also furnish illustrative examples to express relationship between these mappings. As a consequence, the results are applied to the existence of solution of an integral equation arising from an ODE ...
متن کامل$C$-class functions on common fixed point theorems for weak contraction mapping of integral type in modular spaces
In this paper, we use the concept of $C$-class functions introduced by Ansari [4] to prove the existence and uniqueness of common fixed point for self-mappings in modular spaces of integral inequality. Our results extended and generalized previous known results in this direction.
متن کاملExtensions of Some Fixed Point Theorems for Weak-Contraction Mappings in Partially Ordered Modular Metric Spaces
The purpose of this paper is to establish fixed point results for a single mapping in a partially ordered modular metric space, and to prove a common fixed point theorem for two self-maps satisfying some weak contractive inequalities.
متن کاملBest proximity point theorems in 1/2−modular metric spaces
In this paper, first we introduce the notion of $frac{1}{2}$-modular metric spaces and weak $(alpha,Theta)$-$omega$-contractions in this spaces and we establish some results of best proximity points. Finally, as consequences of these theorems, we derive best proximity point theorems in modular metric spaces endowed with a graph and in partially ordered metric spaces. We present an ex...
متن کامل